# Open Science Grid

Frank Würthwein
OSG Application Coordinator
OSG Extension Lead
Experimental Elementary Particle Physics
UCSD

**Open Science Grid** 

### Overview

- → OSG in a nutshell
- → Using the OSG
- → Present Utilization & Expected Growth
- → Near term Future



2

### OSG in a nutshell

- → High Throughput Computing
  - Opportunistic scavenging on cheap hardware.
  - Owner controlled policies.
- → "open consortium"
  - Add OSG project to an open consortium to provide cohesion and sustainability.
- → Heterogeneous Middleware stack
  - Minimal site requirements & optional services
  - Production grid allows coexistence of multiple OSG releases.
- ⇒ "Linux rules": mostly RHEL3/4 on Intel/AMD
- ⇒ Grid of clusters
  - Compute & storage (mostly) on private Gb/s LANs.
  - Some sites with (multiple) 10Gb/s WAN "uplink".



# Using the OSG

Authentication & Authorization Moving & Storing Data Submitting jobs & "workloads" Strategies for Success



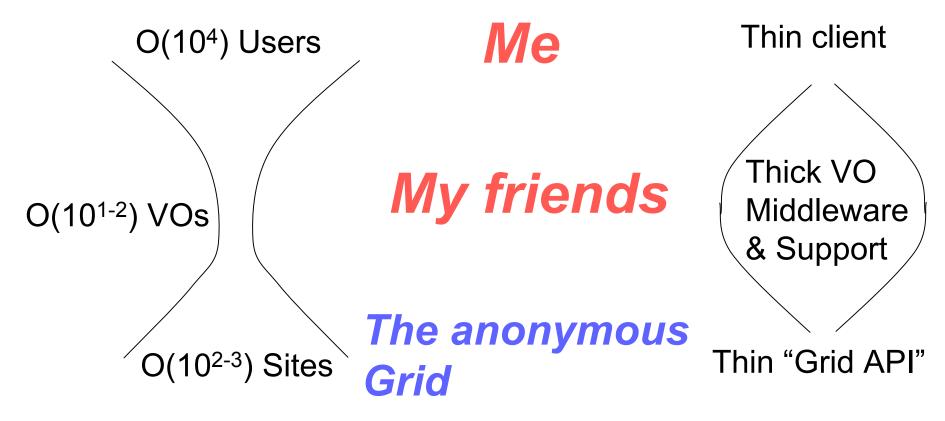


### Making the Grid attractive

- **⇒** Minimize entry threshold for resource owners
  - Minimize software stack.
  - Minimize support load.
- **⇒** Minimize entry threshold for users
  - Feature rich software stack.
  - Excellent user support.

Resolve contradiction via "thick" Virtual Organization layer of services between users and the grid.

(Talks in "Enabling User Communities" Session


Monday afternoon.)



# Me -- My friends -- The grid

Domain science specific

Common to all sciences





### **Authentication & Authorization**

### **⇒** OSG Responsibilities

- X509 based middleware
- Accounts may be dynamic/static, shared/FQAN-specific

### **⇒** VO Responsibilities

- Instantiate VOMS
- Register users & define/manage their roles

### **⇒** Site Responsibilities

- Choose security model (what accounts are supported)
- Choose VOs to allow
- Default accept of all users in VO but individuals or groups within VO can be denied.



# User Management

- ⇒ *User obtains DN* from CA that is vetted by TAGPMA
- *User registers with VO* and is added to VOMS of VO.
  - VO responsible for registration of VOMS with OSG GOC.
  - VO responsible for users to sign AUP.
  - VO responsible for VOMS operations.
    - VOMS shared for ops on multiple grids globally by some VOs.
    - Default OSG VO exists for new communities & single PIs.
- ⇒ Sites decide which VOs to support (striving for default admit)
  - Site populates GUMS daily from VOMSes of all VOs
  - Site chooses uid policy for each VO & role
    - Dynamic vs static vs group accounts
- ⇒ User uses whatever services the VO provides in support of users
  - VOs generally hide grid behind portal
- $\Rightarrow$  Any and all *support is responsibility of VO* 
  - Helping its users
  - Responding to complains from grid sites about its users.



## Moving & storing data

### **⇒** OSG Responsibilities

- Define storage types & their APIs from WAN & LAN
- Define information schema for "finding" storage
- All storage is local to site no global filesystem!

### **⇒** VO Responsibilities

Manage data transfer & catalogues

### **⇒** Site Responsibilities

- Choose storage type to support & how much
- Implement storage type according to OSG rules
- Truth in advertisement



### Disk areas in some detail:

- ⇒ Shared filesystem as *applications area* at site.
  - Read only from compute cluster.
  - Role based installation via GRAM.
- ⇒ Batch slot specific *local work space*.
  - No persistency beyond batch slot lease.
  - Not shared across batch slots.
  - Read & write access (of course).
- ⇒ SRM/gftp controlled *data area*.
  - "persistent" data store beyond job boundaries.
  - Job related stage in/out.
  - SRM v1.1 today.
  - SRM v2.2 expected in Q2 2007 (space reservation).



## Submitting jobs/workloads

#### **⇒** OSG Responsibilities

- Define Interface to batch system
- Define information schema
- Provide middleware that implements the above.

#### **→ VO Responsibilities**

- Manage submissions & workflows
- VO controlled workload management system or wms from other grids, e.g. EGEE/LCG.

### **⇒** Site Responsibilities

- Choose batch system
- Configure interface according to OSG rules
- Truth in advertisement



## Applications & Runtime Model

- User specific portion that is small and comes with the job.
- > VO specific portion that is large and is preinstalled.
- > CPU access policies vary from site to site
  - > Ideal runtime ~ O(hours)
    - Small enough to not loose too much due to preemption policies.
    - Large enough to be efficient despite long scheduling times of grid middleware.



## Simple Workflow

#### ⇒ Install Application Software at site(s)

- VO admin install via GRAM.
- VO users have read only access from batch slots.

#### ⇒ "Download" data to site(s)

- VO admin move data via SRM/gftp.
- VO users have read only access from batch slots.

### $\Rightarrow$ Submit job(s) to site(s)

- VO users submit job(s)/DAG via condor-g.
- Jobs run in batch slots, writing output to local disk.
- Jobs copy output from local disk to SRM/gftp data area.

### ⇒ Collect output from site(s)

VO users collect output from site(s) via SRM/gftp as part of DAG.



## Late binding

Talks by:

Maeno: Monday afternoon

Sfiligoi, Padhi: Tuesday afternoon

- > Grid is a hostile environment:
  - > Scheduling policies are unpredictable
    - Many sites preempt, and only idle resources are free
  - Inherent diversity of Linux variants
  - > Not everybody is truthful in their advertisement
- Submit "pilot" jobs instead of user jobs
- ➤ Bind user to pilot only after batch slot at a site is successfully leased, and "sanity checked".
- Re-bind user jobs to new pilot upon failure.



14

### Status of Utilization

OSG job = job submitted via OSG CE "Accounting" of OSG jobs not (yet) required!





### Grid of sites

- → IT Departments at Universities & National Labs make their hardware resources available via OSG interfaces.
  - CE: (modified) pre-ws GRAM
  - SE: SRM for large volume, gftp & (N)FS for small volume

#### ⇒ Today's scale:

- = 20-50 "active" sites (depending on definition of "active")
- $\sim 5000$  batch slots
- − ~ 1000TB storage
- $\sim 10$ -15 "active" sites with shared 10Gbps or better connectivity

#### **⇒** Expected Scale for End of 2008

- − ~50-100 "active" sites
- ~30-50,000 batch slots
- Few PB of storage
- $\sim 25-50\%$  of sites with shared 10Gbps or better connectivity



### OSG use by Numbers

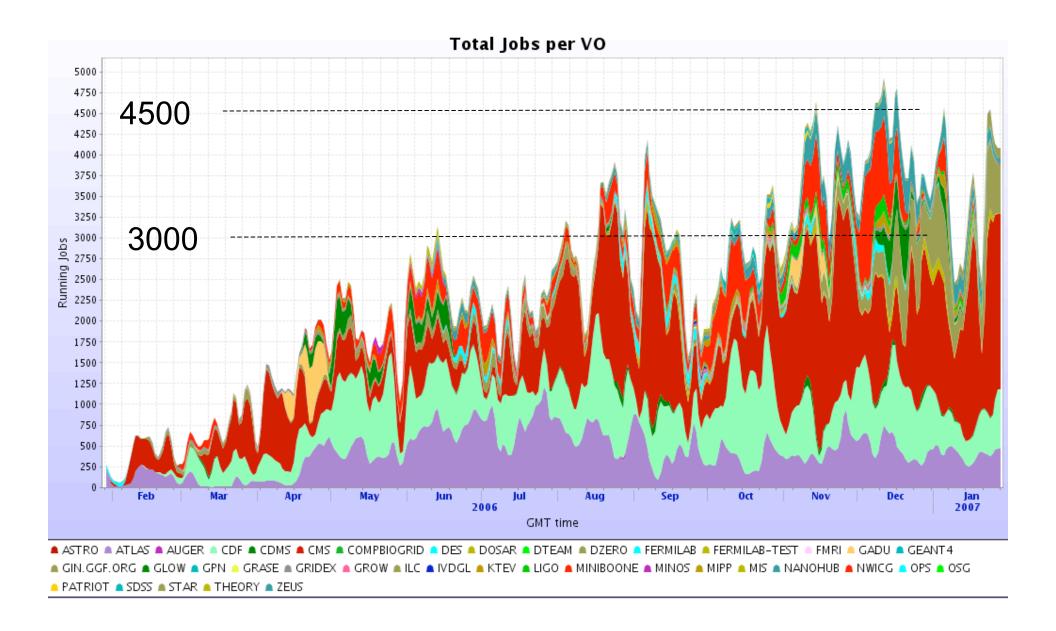
39 Virtual Communities

6 with >1000 jobs max.

(5 particle physics & 1 campus grid)

4 with 500-1000 max.

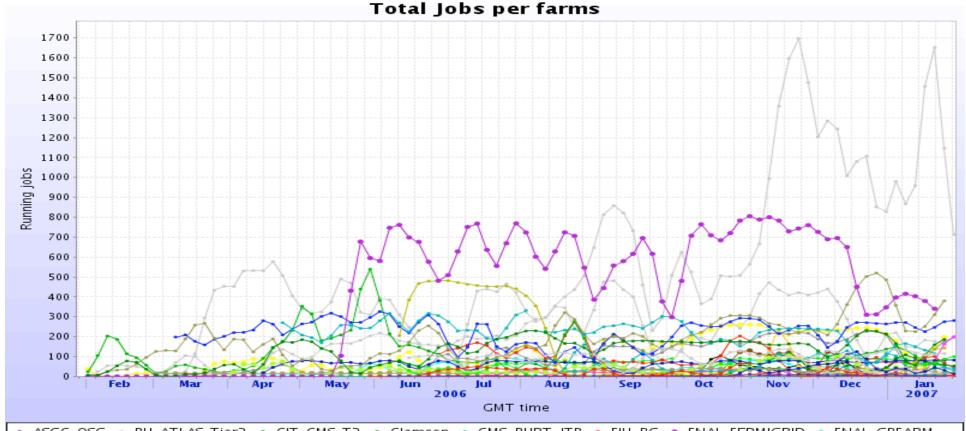
(two outside physics)


10 with 100-500 max

(campus grids and physics)



| Running Jobs  |            |     |       |      |
|---------------|------------|-----|-------|------|
| Farm          | Last value | Min | Avg   | Max  |
| ASTRO         | 0          | 0   | 0     | 0    |
| ATLAS         | 463        | 0   | 420.8 | 1555 |
| AUGER         | 0          | 0   | 0.334 | 64   |
| CDF           | 734        | 0   | 514.5 | 2086 |
| CDMS          | 0          | 0   | 11.57 | 880  |
| CMS           | 2021       | 0   | 791.1 | 3719 |
| COMPBIOGRID   | 0          | 0   | 0.345 | 10   |
| DES           | 0          | 0   | 1.486 | 62   |
| DOSAR         | 9          | 0   | 20.74 | 226  |
| DTEAM         | 0          | 0   | 0.183 | 2    |
| DZERO         | 572        | 0   | 135.6 | 1825 |
| FERMILAB      | 0          | 0   | 24.43 | 562  |
| FERMILAB-TEST | 0          | 0   | 0.036 | 1    |
| FMRI          | 0          | 0   | 0     | 0    |
| GADU          | 0          | 0   | 29.61 | 754  |
| GEANT4        | 0          | 0   | 0     | 2    |
| GIN.GGF.ORG   | 0          | 0   | 0.007 | 4    |
| GLOW          | 4          | 0   | 45.65 | 1313 |
| GPN           | 0          | 0   | 0     | 0    |
| GRASE         | 0          | 0   | 0.301 | 14   |
| GRIDEX        | 33         | 0   | 25.93 | 268  |
| GROW          | 0          | 0   | 2.693 | 110  |
| ILC           | 0          | 0   | 0     | 0    |
| IVDGL         | 0          | 0   | 0.714 | 73   |
| KTEV          | 0          | 0   | 22.12 | 288  |
| LIGO          | 0          | 0   | 23.1  | 369  |
| MINIBOONE     | 0          | 0   | 183.4 | 2000 |
| MINOS         | 0          | 0   | 5.829 | 170  |
| MIPP          | 0          | 0   | 13.52 | 208  |
| MIS           | 0          | 0   | 0.444 | 71   |
| NANOHUB       | 37         | 0   | 81.92 | 600  |
| NWICG         | 0          | 0   | 0     | 2    |
| OPS           | 0          | 0   | 0.011 | 4    |
| OSG           | 0          | 0   | 0.316 | 27   |
| PATRIOT       | 0          | 0   | 3.477 | 194  |
| SDSS          | 4          | 0   | 8.41  | 197  |
| STAR          | 128        | 0   | 21.72 | 334  |
| THEORY        | 0          | 0   | 5.267 | 73   |
| ZEUS          | 0          | 0   | 2.721 | 205  |
| Total         | 4005       |     | 2398  |      |


### Number of running (and monitored) "OSG jobs" within last year.

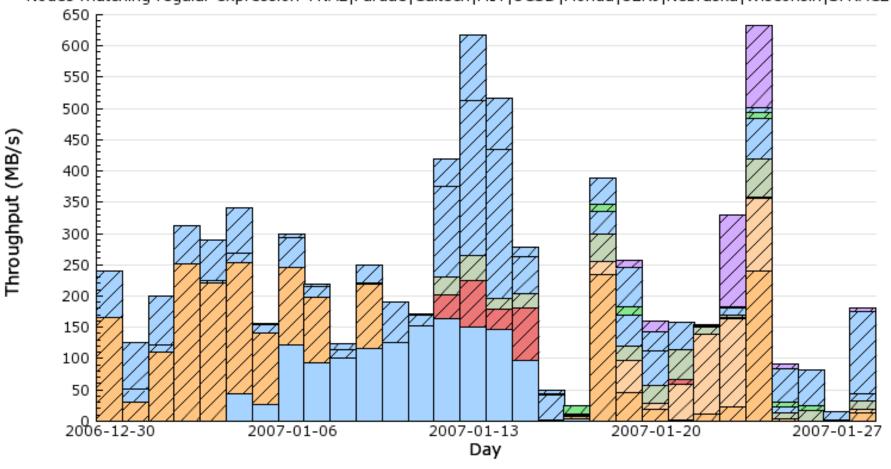


### Number of jobs running at sites:

Many small sites, or with mostly local activity.

>1k max>0.5k max10 sites>100 max29 sitesTotal:47 sites




→ ASGC\_OSG → BU\_ATLAS\_Tier2 → CIT\_CMS\_T2 → Clemson → CMS-BURT-ITB → FIU-PG → FNAL\_FERMIGRID → FNAL\_GPFARM → GRASE-CCR-U2 → IU\_ATLAS\_Tier2 → Lehigh\_coral → ligo-db2.aset.psu.edu → LTU\_CCT → LTU\_OSG → MIT\_CMS → MWT2\_UC → Nebraska → NERSC-PDSF → NWICG-NotreDame → osg-gw-2.t2.ucsd.edu → OSG\_INSTALL\_TEST\_2 → OSG\_LIGO\_PSU → OU\_OCHEP\_SWT2 → OU\_OSCER\_ATLAS → OU\_OSCER\_CONDOR → OUHEP\_OSG → Purdue-ITaP → Purdue-Lear → Rice → SPRACE → STAR-BNL → STAR-SAO\_PAULO → STAR-WSU → UARK\_ACE → UC\_ATLAS\_MWT2 → UERJ\_HEPGRID → UFlorida-IHEPA → UFlorida-PG → UIC\_PHYSICS → UIOWA-OSG-PROD → UMATLAS → UNM\_HPC → USCMS-FNAL-WC1-CE → UVA-sunfire → UWM adisonCMS → UWMilwaukee → Vanderbilt

# CMS on OSG January 2007

#### PhEDEx SC4 Data Transfers By Destination

30 Days from 2006-12-30 to 2007-01-28 GMT

Nodes matching regular expression 'FNAL|Purdue|Caltech|MIT|UCSD|Florida|UERJ|Nebraska|Wisconsin|SPRACE'





# Next Steps in OSG facility: Dotting the i's and crossing the t's

- ⇒ Focus on Accounting
  - OSG 0.6 comes with first mandatory accounting system
  - Wall clock time, data transfers, space utilization are accounted for.
- ⇒ Focus on large scale managed storage
  - Added SRM/dCache 1.7 to OSG 0.6
  - SRM/dCache 1.8 coming with space reservation as OSG 0.6.x
- ⇒ Focus on Information System
  - CEMon @ sites and centralized OSG infosys @ GOC
  - Truth in advertisement
    - Task force on GIP attributes, including site validation & ticketing

For more, see site validation session on Monday, and "Effectiveness session on Tuesday.